Developments with Ground Penetrating Radar to Detect and Map Oil Trapped Under Ice

Difference (oil - background)

Y Distance (m)

John Bradford, Lee Liberty CGISS, Department of Geosciences, Boise State University

David Dickins, DF Dickins Assoc., Ltd.

Per Johan Brandvik, SINTEF

Acknowledgements

- Minerals Management Service
- Alaska Clean Seas
- Statoil
- Alaska Department of Environmental Conservation
- Exxon Mobil
- Conoco Phillips

- SINTEF Staff
- Len Zabilansky US
 Army Cold Regions
 Research and
 Engineering
 Laboratory
- BSU graduate students Troy Brosten, Scott Hess, and Leah Steinbronn

Fundamentals of Ground Penetrating Radar

- GPR is an electromagnetic wave operating at radio frequencies
 - 10 MHz 1 GHz
- Sensitive to changes in electrical properties
 - Electric permittivity
 - Electric conductivity
 - Signal wont propagate through good conductors

Recording the Reflected Waves

Conceptual Model of the GPR Method

Electrical Properties in the Arctic Marine Environment

Material	Relative Dielectric Permittivity	Conductivity (S/m)	Velocity m/ns	Wavelength @ 500 MHz
Air	1	0	0.3	60 cm
Sea Water	88	1-5	No propagation	
Sea Ice	4-8	.011	.134	27 cm
Oil	2	.0005	.212	42 cm

Electromagnetic Wave Propagation

Suggested by Goodman, Dean and Fingas in 1985!

THE LEADING EDGE

October 2002, Vol. 21, No. 18

Special Section:

ATTRIBULE

Interpreters Corner:

Depth conversion of Tangguh gas fields

The Meter Reader:

Remote seming of hydrocarbon byers by sistled logging (SBL): Results from a cruse offinate Ango

THE SOCIETY OF EXPLORATION GEOPHISICISTS

Controlled Experiment Design

- Cold RegionsResearch andEngineering Lab
- 9 m x 40 m cold pool
- 7, 2x2 m isolated test cells
- 35 cm ice thickness

Surface Ocean Currents

Microsoft that from various surrous:

© 15th Commission Commission Falls, N.S., N.S.

our relates for disease.

Controlled spill conducted in an 11 m diameter containment cell constructed by SINTEF personnel. Plastic containment skirt extends to 1.5 m

Spill consisted of 3400 I of Statfjord crude pumped into the cell over a period of 2 hr

GPR Data Acquisition

- All data acquired with Pulse Ekko Pro GPR system w/ 500 and 1000 MHz antennas
- Multi-offset acquisition to determine effective permittivity of ice
- Pre and post oil emplacement
 3D surveying over 20 x 20 m
 grid
- Large scale 2D profiling
- Airborne tests

Conclusions

- Attribute anomalies outlined ~80% of spilled oil
 - Some false positives
 - Some oiled zones not delineated
- Attribute sensitivity depends on oil thickness, and time since spill
- Results depend on being able to differentiate areas with oil films from the background response, which may be highly variable
- Numerical modeling can help improve our understanding of the GPR response to the oil/ice system
 - Allows for virtual experiments
- Airborne platform has potential